35 research outputs found

    Modes-of-Action Related to Repeated Dose Toxicity: Tissue-Specific Biological Roles of PPAR γ

    Get PDF
    Comprehensive understanding of the precise mode of action/adverse outcome pathway (MoA/AOP) of chemicals becomes a key step towards superseding the current repeated dose toxicity testing methodology with new generation predictive toxicology tools. The description and characterization of the toxicological MoA leading to non-alcoholic fatty liver disease (NAFLD) are of specific interest, due to its increasing incidence in the modern society. Growing evidence stresses on the PPARγ ligand-dependent dysregulation as a key molecular initiating event (MIE) for this adverse effect. The aim of this work was to analyze and systematize the numerous scientific data about the steatogenic role of PPARγ. Over 300 papers were ranked according to preliminary defined criteria and used as reliable and significant sources of data about the PPARγ-dependent prosteatotic MoA. A detailed analysis was performed regarding proteins which PPARγ-mediated expression changes had been confirmed to be prosteatotic by most experimental evidence. Two probable toxicological MoAs from PPARγ ligand binding to NAFLD were described according to the Organisation for Economic Cooperation and Development (OECD) concepts: (i) PPARγ activation in hepatocytes and (ii) PPARγ inhibition in adipocytes. The possible events at different levels of biological organization starting from the MIE to the organ response and the connections between them were described in details

    The Use of Computational Methods in the Grouping and Assessment of Chemicals - Preliminary Investigations

    Get PDF
    This document presents a perspective of how computational approaches could potentially be used in the grouping and assessment of chemicals, and especially in the application of read-across and the development of chemical categories. The perspective is based on experience gained by the authors during 2006 and 2007, when the Joint Research Centre's European Chemicals Bureau was directly involved in the drafting of technical guidance on the applicability of computational methods under REACH. Some of the experience gained and ideas developed resulted from a number of research-based case studies conducted in-house during 2006 and the first half of 2007. The case studies were performed to explore the possible applications of computational methods in the assessment of chemicals and to contribute to the development of technical guidance. Not all of the methods explored and ideas developed are explicitly included in the final guidance documentation for REACH. Many of the methods are novel, and are still being refined and assessed by the scientific community. At present, many of the methods have not been tried and tested in the regulatory context. The authors therefore hope that the perspective and case studies compiled in this document, whilst not intended to serve as guidance, will nevertheless provide an input to further research efforts aimed at developing computational methods, and at exploring their potential applicability in regulatory assessment of chemicals.JRC.I.3-Toxicology and chemical substance

    Chemical Similarity and Threshold of Toxicological Concern (TTC) Approaches: Report of an ECB Workshop held in Ispra, November 2005

    Get PDF
    There are many national, regional and international programmes – either regulatory or voluntary – to assess the hazards or risks of chemical substances to humans and the environment. The first step in making a hazard assessment of a chemical is to ensure that there is adequate information on each of the endpoints. If adequate information is not available then additional data is needed to complete the dataset for this substance. For reasons of resources and animal welfare, it is important to limit the number of tests that have to be conducted, where this is scientifically justifiable. One approach is to consider closely related chemicals as a group, or chemical category, rather than as individual chemicals. In a category approach, data for chemicals and endpoints that have been already tested are used to estimate the hazard for untested chemicals and endpoints. Categories of chemicals are selected on the basis of similarities in biological activity which is associated with a common underlying mechanism of action. A homologous series of chemicals exhibiting a coherent trend in biological activity can be rationalised on the basis of a constant change in structure. This type of grouping is relatively straightforward. The challenge lies in identifying the relevant chemical structural and physicochemical characteristics that enable more sophisticated groupings to be made on the basis of similarity in biological activity and hence purported mechanism of action. Linking two chemicals together and rationalising their similarity with reference to one or more endpoints has been very much carried out on an ad hoc basis. Even with larger groups, the process and approach is ad hoc and based on expert judgement. There still appears to be very little guidance about the tools and approaches for grouping chemicals systematically. In November 2005, the ECB Workshop on Chemical Similarity and Thresholds of Toxicological Concern (TTC) Approaches was convened to identify the available approaches that currently exist to encode similarity and how these can be used to facilitate the grouping of chemicals. This report aims to capture the main themes that were discussed. In particular, it outlines a number of different approaches that can facilitate the formation of chemical groupings in terms of the context under consideration and the likely information that would be required. Grouping methods were divided into one of four classes – knowledge-based, analogue-based, unsupervised, and supervised. A flowchart was constructed to attempt to capture a possible work flow to highlight where and how these approaches might be best applied.JRC.I.3-Toxicology and chemical substance

    A Comprehensive Evaluation of Sdox, a Promising H2S-Releasing Doxorubicin for the Treatment of Chemoresistant Tumors

    Get PDF
    Sdox is a hydrogen sulfide (H2S)-releasing doxorubicin effective in P-glycoprotein-overexpressing/doxorubicin-resistant tumor models and not cytotoxic, as the parental drug, in H9c2 cardiomyocytes. The aim of this study was the assessment of Sdox drug-like features and its absorption, distribution, metabolism, and excretion (ADME)/toxicity properties, by a multi- and transdisciplinary in silico, in vitro, and in vivo approach. Doxorubicin was used as the reference compound. The in silico profiling suggested that Sdox possesses higher lipophilicity and lower solubility compared to doxorubicin, and the off-targets prediction revealed relevant differences between Dox and Sdox towards several cancer targets, suggesting different toxicological profiles. In vitro data showed that Sdox is a substrate with lower affinity for P-glycoprotein, less hepatotoxic, and causes less oxidative damage than doxorubicin. Both anthracyclines inhibited CYP3A4, but not hERG currents. Unlike doxorubicin, the percentage of zebrafish live embryos at 72 hpf was not affected by Sdox treatment. In conclusion, these findings demonstrate that Sdox displays a more favorable drug-like ADME/toxicity profile than doxorubicin, different selectivity towards cancer targets, along with a greater preclinical efficacy in resistant tumors. Therefore, Sdox represents a prototype of innovative anthracyclines, worthy of further investigations in clinical settings

    The application of molecular modelling in the safety assessment of chemicals: A case study on ligand-dependent PPARγ dysregulation.

    Get PDF
    The aim of this paper was to provide a proof of concept demonstrating that molecular modelling methodologies can be employed as a part of an integrated strategy to support toxicity prediction consistent with the mode of action/adverse outcome pathway (MoA/AOP) framework. To illustrate the role of molecular modelling in predictive toxicology, a case study was undertaken in which molecular modelling methodologies were employed to predict the activation of the peroxisome proliferator-activated nuclear receptor γ (PPARγ) as a potential molecular initiating event (MIE) for liver steatosis. A stepwise procedure combining different in silico approaches (virtual screening based on docking and pharmacophore filtering, and molecular field analysis) was developed to screen for PPARγ full agonists and to predict their transactivation activity (EC50). The performance metrics of the classification model to predict PPARγ full agonists were balanced accuracy=81%, sensitivity=85% and specificity=76%. The 3D QSAR model developed to predict EC50 of PPARγ full agonists had the following statistical parameters: q(2)cv=0.610, Nopt=7, SEPcv=0.505, r(2)pr=0.552. To support the linkage of PPARγ agonism predictions to prosteatotic potential, molecular modelling was combined with independently performed mechanistic mining of available in vivo toxicity data followed by ToxPrint chemotypes analysis. The approaches investigated demonstrated a potential to predict the MIE, to facilitate the process of MoA/AOP elaboration, to increase the scientific confidence in AOP, and to become a basis for 3D chemotype development

    Molecular Modelling Study of the PPARγ Receptor in Relation to the Mode of Action/Adverse Outcome Pathway Framework for Liver Steatosis

    No full text
    The comprehensive understanding of the precise mode of action and/or adverse outcome pathway (MoA/AOP) of chemicals has become a key step toward the development of a new generation of predictive toxicology tools. One of the challenges of this process is to test the feasibility of the molecular modelling approaches to explore key molecular initiating events (MIE) within the integrated strategy of MoA/AOP characterisation. The description of MoAs leading to toxicity and liver damage has been the focus of much interest. Growing evidence underlines liver PPARγ ligand-dependent activation as a key MIE in the elicitation of liver steatosis. Synthetic PPARγ full agonists are of special concern, since they may trigger a number of adverse effects not observed with partial agonists. In this study, molecular modelling was performed based on the PPARγ complexes with full agonists extracted from the Protein Data Bank. The receptor binding pocket was analysed, and the specific ligand-receptor interactions were identified for the most active ligands. A pharmacophore model was derived, and the most important pharmacophore features were outlined and characterised in relation to their specific role for PPARγ activation. The results are useful for the characterisation of the chemical space of PPARγ full agonists and could facilitate the development of preliminary filtering rules for the effective virtual ligand screening of compounds with PPARγ full agonistic activity

    The use of computational methods for the assessment of chemicals in REACH

    No full text
    This article provides an overview of the use of computational methods in chemicals hazard and risk assessment under the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) legislation. The key aspects of the REACH guidance on the assessment of chemicals are discussed that treat the possible stepwise (tiered) approach combining multiple computational methods in assessing chemicals. Several publicly accessible software tools for the computer-based estimation of chemical hazard, developed by the European Commission¿s Joint Research Centre (JRC), are described.JRC.DDG.I.6-Systems toxicolog

    Hybrid Classification/Regression Approach to QSAR Modeling of Stoichiometric Antiradical Capacity Assays’ Endpoints

    No full text
    Quantitative structure–activity relationships (QSAR) are a widely used methodology allowing not only a better understanding of the mechanisms of chemical reactions, including radical scavenging, but also to predict the relevant properties of chemical compounds without their synthesis, isolation and experimental testing. Unlike the QSAR modeling of the kinetic antioxidant assays, modeling of the assays with stoichiometric endpoints depends strongly on the number of hydroxyl groups in the antioxidant molecule, as well as on some integral molecular descriptors characterizing the proportion of OH-groups able to enter and complete the radical scavenging reaction. In this work, we tested the feasibility of a “hybrid” classification/regression approach, consisting of explicit classification of individual OH-groups as involved in radical scavenging reactions, and using further the number of these OH-groups as a descriptor in simple-regression QSAR models of antiradical capacity assays with stoichiometric endpoints. A simple threshold classification based on the sum of trolox-equivalent antiradical capacity values was used, selecting OH-groups with specific radical stability- and reactivity-related electronic parameters or their combination as “active” or “inactive”. We showed that this classification/regression modeling approach provides a substantial improvement of the simple-regression QSAR models over those built on the number of total phenolic OH-groups only, and yields a statistical performance similar to that of the best reported multiple-regression QSARs for antiradical capacity assays with stoichiometric endpoints
    corecore